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Abstract

We prove that the elliptic genera of the real GrassmannianGr4(R
2m+5), m ≥ 1, and the space

F4/Sp(3)Sp(1) are identically zero. These vanishings are consistent with the rigidity underS1

actions of the elliptic genera on these non-spin manifolds, and imply that their signatures are zero.
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1. Introduction

Hirzebruch and Slodowy[7] studied the elliptic genus on homogeneous spaces with an
emphasis on those which are spin. In particular, they showed that the elliptic genus vanishes
completely in many cases. There are, however, several non-spin homogeneous spaces whose
elliptic genus has not been computed and which, as we shall see, also vanishes completely.
They are the irreducible Riemannian symmetrics spaces withb2 = 0.

The elliptic genus of a compact, oriented smooth 4n-dimensional manifoldM can be
defined by the formal power series:

τq(M) =
∞∑
i=0

τ(M,Ri)q
i,
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whereτ(M,Ri) is the index of the signature operator with coefficients in a (virtual) vector
bundleRi. The bundlesRi are given by the following series:

R(q, T ) =
∞∑
i=0

Riq
i = ∞⊗

i=1

∧
qiT ⊗ ∞⊗

i=1
SqiT,

whereT = TMc is the complexified tangent bundle,

SaT =
∞∑
j=0

ajSjT,
∧

aT =
∞∑
j=0

aj
∧j

T

andSjT ,
∧j

T denote thejth symmetric and exterior tensor powers ofT , respectively (cf.
[6]). The first few terms of the sequence are

R0 = 1, R1 = 2T, R2 = 2(T⊗2 + T),

R3 = 2T⊗3 + ∧3
T + S3T + 4T⊗2 + 2T.

Notice that the constant term ofτq(M) is the signature ofM, τ(M). This genus has been
well studied on spin manifolds[3,6,9,10,12–14], for which Witten conjectured its rigidity
underS1 actions. The rigidity theorem was proved by Taubes[12] and Bott–Taubes[3].

By means of a change of coordinate inq, one obtains the alternative expression (cf.[6]):

τ̃q(M) = 1

qn/2

∞∑
j=0

Â(M,R′
j)q

j,

whereR′
j is the sequence of (virtual) bundles given by

R′(q, T) = ⊗
k=2m+1

∧
−qkT ⊗ ⊗

k=2m+2
SqkT

and

Â(M,R′
j) = 〈Â(M) · ch(R′

j), [M]〉

is a twistedÂ-genus. The first few terms of the sequence are

R′
0 = 1, R′

1 = −T, R′
2 = ∧2

T + T, R′
3 = −∧3

T − T − T ⊗ T.

If M is spin,τ̃q(M) is a power series whose coefficients are indices of the Dirac operator
with coefficients in the bundlesR′

i, i.e. all the coefficients are integers.
We have found, however, that the rigidity ofτq(M)underS1 actions still holds on non-spin

manifoldsM with finite second homotopy group[4,5]. Furthermore, we have also proved
the vanishing of the first coefficient ofτ̃q(M) on these manifolds

Â(M) = 0,
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although it is no longer the index of the Dirac operator. Such a vanishing is similar to that
on spin manifolds withS1-actions[1], and is to be contrasted with the situation on non-spin
manifolds with infinite second homotopy group as, for example:

Â(CP
2) = −1

8.

Motivated by such a rigidity result, this paper is devoted to compute the entire elliptic genus
of the non-spin real Grassmannians of 4-planes inR

2m+5, Gr4(R
2m+5), m ≥ 1, and the

spaceF4/Sp(3)Sp(1).

Theorem 1.1. The elliptic genera of Gr4(R
2m+5), m ≥ 1, and of F4/Sp(3)Sp(1) vanish

identically:

τq(Gr4(R
2m+5)) = 0, τ̃q(Gr4(R

2m+5)) = 0,

τq

(
F4

Sp(3)Sp(1)

)
= 0, τ̃q

(
F4

Sp(3)Sp(1)

)
= 0.

This result deals with the elliptic genera of some of the spaces not treated by Hirzebruch
and Slodowy in[7], and generalizes[2, Theorem 23.3(iii)]. We shall prove the theorem by
computing the coefficients of̃τq via using twistor transform. They are twistedÂ-genera
(characteristic numbers), but are not the indices of twisted Dirac operators. The Grassman-
nianGr4(R

2m+5), m ≥ 1, andF4/Sp(3)Sp(1) are quaternion-Kähler manifolds, i.e. their
holonomy is contained in a group Sp(n)Sp(1) for appropriate values ofn. We refer the
reader to[11] for a survey on quaternion-Kähler geometry.

2. Quaternion-Kähler preliminaries

The holonomy group Sp(n)Sp(1) = Sp(n) ×Z2 Sp(1) ⊂ SO(4n) of a 4n-dimensional
quaternion-Kähler manifoldM determines the following decomposition of the complexified
tangent bundle:

TMc = E ⊗H,

where the fiber of the (locally defined) bundleE is isomorphic to the standard representation
C

2n of Sp(n), and the fibre of the (locally defined) bundleH is isomorphic to the standard
representationC2 of Sp(1) ∼= SU(2).

Let us also denote the standard representations of Sp(n) and Sp(1) byE andH , respec-
tively. The irreducible representations of Sp(1) are the symmetric tensor powersSqH ofH ,
with dim(SqH) = q + 1. The group Sp(n) leaves invariant a skew formω ∈ ∧2

E. The
primitive subspace

∧p

0 E ⊂ ∧p
E is the Hermitian complement ofω ∧ ∧p−2

E ⊂ ∧p
E

and is an irreducible representation of Sp(n), p ≤ n. Let us state the following lemma for
future use.

Lemma 2.1. Let F be a vector space and U = C
2 the standard representation of SU(2).

Then we have the following K-theoretic identities
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∧j
(F ⊗ U) =

[j/2]∑
k=0

∧j−k
F ⊗ ∧k

F ⊗ (Sj−2kU − Sj−2k−2U),

Sj(F ⊗ U) =
[j/2]∑
k=0

Sj−kF ⊗ SkF ⊗ (Sj−2kU − Sj−2k−2U).

The Sp(n)Sp(1)-moduleRp,q = ∧p

0 E⊗ SqH gives rise to a well defined bundle onM
only if p + q is even. Otherwise, the corresponding bundle will only be locally defined.
The spin group Spin(4n) acts onC

4n via SO(4n). The spin representation∆ splits as
the sum of two irreducible representations of equal dimension of Spin(4n), ∆ = ∆+ ⊕
∆−. Since Sp(n)Sp(1) ⊂ SO(4n), the spin representation∆ decomposes further under
Sp(n)Sp(1)

∆ =
n∑

q=0

Rn−q,q.

This decomposition says that a quaternion-Kähler manifold admits a globally defined spin
bundle if n is even. It also allows us to define the Dirac operator with coefficients in
Pp(E)⊗ SqH :

D(Pp(E)⊗ SqH) : Γ(∆+ ⊗ Pp(E)⊗ SqH) → Γ(∆− ⊗ Pp(E)⊗ SqH),

whenevern + p + q is even, wherePp(E) is a bundle of tensors onE of pure degreep.
D(Pp(E)⊗ SqH) is an elliptic differential operator and its index is

ind(D(Pp(E)⊗ SqH)) = 〈Â(M) ch(Pp(E)⊗ SqH), [M]〉,
whereÂ(M) is the Â-genus of the manifold and ch( ) the Chern character of the corre-
sponding bundle. Notice that the right hand side of this equation defines a characteristic
number onM for all p andq, regardless of the parity ofn + p + q. In fact, it defines a
polynomial inp andq of degree less than or equal to 2n+ 1 with characteristic numbers of
M as coefficients. This observation will allow us to compute numbers such asÂ(M) even
when this number is not the index of an elliptic operator.

2.1. The twistor space and twistor transform

The twistor spaceZ of a complete 4n-dimensional quaternion-Kähler manifoldM with
positive scalar curvature can be constructed as the projectivization of the locally defined
bundleH → M, so that the fibre ofπ : Z → M is CP

1. It is a Kähler manifold of
complex dimension 2n + 1. Let L be the positive line bundle overZ which restricted
to the fibers isL|π−1(x)

∼= O(2). The Levi-Civita connection ofM determines a hori-
zontal holomorphic distributionD in T 1,0Z, which is a complex contact structure such
that

0 → D→ T 1,0Z → L → 0.
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We also have the localC∞-isomorphisms:

D ∼= π∗E ⊗ L1/2, π∗H ∼= L1/2 ⊕ L−1/2.

Consider the holomorphic Euler characteristics:

χ(Z,O(Lk ⊗ Pp(D∗))) =
2n+1∑
i=0

(−1)i dimHi(Z,O(Lk ⊗ Pp(D∗))),

wherePp(D∗) is a bundle of tensors onD∗ of degreep. The cohomological version of the
twistor transform that we shall need is the following[11]:

Â(M,Pp(E)⊗ SqH) = χ(Z,O(Lk ⊗ Pp(D∗))),

whereq = n + 2k − p. In fact, we shall consider these expressions as polynomials inp

andq (p andk resp.) whose coefficients are characteristic numbers ofM (Z resp.). We can
express this transform schematically as follows:

Pp(E)⊗ SqH �→ Pp(π∗E)⊗ Lq−n/2.

2.2. Wolf spaces and Weyl dimension formula

In order to carry out the calculations, let us recall the description of the homogeneous
quaternion-Kähler manifolds with positive scalar curvature[15]. LetG andg be a compact
simple Lie group and its Lie algebra, respectively. LetH ⊂ gc be a Cartan subalgebra and
letR be the set of roots ofg andρ the maximal root with respect to the order onH. Define
the following subalgebras:

K0 = span(ρ)⊕ gρ ⊕ g−ρ ∼= sp(1), K1 = H⊕
∑

〈α,ρ〉=0

gα,

where〈, 〉 is the Killing form ongc andgα ⊂ gc is the weight space of the rootα ∈ H. Then
K0 ⊕K1 is a parabolic subalgebra ofgc and the corresponding real formK = g∩ (K0 ⊕K1)

is the Lie algebra ofK = K1 Sp(1). ThusM = G/K is a quaternion-Kähler symmetric
space andZ = G/(K1U(1)) is the twistor space.

Let R(K1 ⊕ u(1)) be the set of roots ofK1U(1) ⊂ G, R+ be the set of positive roots
of G with R(K1 ⊕ u(1)) generated by simple roots,δ = (1/2)

∑
α∈R+ α, andW be the

Weyl group ofG. LetV(λ) be an irreducible representation forK1U(1)with highest weight
λ ∈ R(K1 ⊕u(1)) andV(λ) the corresponding homogeneous vector bundle onG/K. Then,
by the Bott–Borel–Weil theorem and the Weyl dimension formula[8]:

χ(Z,O(V(λ))) = ±dimV(λ) = ±
∏
α∈R+

〈α, δ+ λ〉
〈α, δ〉 .

We shall apply this formula to virtual bundlesLk⊗Pp(D∗), as if they really existed globally
for all k andp.
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3. Proof of the theorem

3.1. The Grassmannian

LetM denote the real GrassmannianGr4(R
2m+5) throughout this section.

First of all, notice that underK0 = SO(2m + 1)Sp(1) ⊂ Sp(2m + 1), E = W ⊗ V

whereW is the fundamental 2m+ 1-dimensional representation of SO(2m+ 1) andV the
two-dimensional representation of Sp(1) = SU(2), so that

T(Gr4(R
2m+5))c = (W ⊗ V)⊗H.

Let {ei, i = 1, . . . , m + 2} denote the canonical basis ofR
m+2. We have the follo-

wing:

H = span({αj = ej − ej+1, j = 1, . . . , m+ 1} ∪ {αm+2 = em+2}),
ρ = e1 + e2 = (1,1,0, . . . ,0), δ = 1

2(2m+ 3,2m+ 1, . . . ,1),

K1 ∼= so(2m+ 1)⊕ su(2) ⊃ span(α3, . . . , αm)⊕ span(α1),

where the last linear span is the Cartan subalgebra ofK1.
The twistor space is

SO(2m+ 5)

SO(2m+ 1)× SU(2)×Z2 U(1)
,

where SU(2)×Z2 U(1) = U(2). The fundamental representationQ of U(2) has dominant
weight (1,0) so thatL = det(Q) has weight(1,1), and the representationV of SU(2)
corresponds toV = Q⊗L1/2 and has weight(1,0)+ (−1/2,−1/2) = (1/2,−1/2). The
standard representationW of SO(2m+ 1) has dominant weight(1,0, . . . ,0) ∈ R

m which
will be embedded inso(2m+ 5) ase3.

Note that any cohomological expression such as

Â(M), Â(M, T), Â(M,
∧2

T), Â(M, S2T)

can be transformed by twistor transform into a sum of (virtual) holomorphic Euler charac-
teristics on the twistor space.

The trivial bundle gets transformed as follows:

1 �→ L−(2m+1)/2,

whose weight isγ0 = ((−2m−1)/2)(e1+e2). By addingδwe see thatγ0+δ = (1,0, (2m−
1)/2, . . . ,1/2) so that when contracted with the roote2 ∈ R+, we get 0. This proves that
the characteristic number̂A(M) = 0.

The tangent bundle gets transformed as follows:

E ⊗H �→ E ⊗ L−m ∼= W ⊗ V ⊗ L−m,

whose weight isγ1 = (1/2)(e1 − e2)−m(e1 + e2)+ e3. By addingδ we see thatγ1 + δ =
(2,0, (2m + 1)/2, (2m − 3)/2, . . . ,1/2) so that when contracted with the roote2 we get
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zero, which proves that the characteristic number isÂ(M, T) = 0. As we can see, the only
two entries that matter are the first two.

The second exterior power of the tangent bundle is

∧2
(E ⊗H) = ∧2

E ⊗ (S2H − 1)+ E ⊗ E,

which gets transformed on the twistor space as

∧2
E ⊗ L1−2m/2 − ∧2

E ⊗ L−2m−1/2 + E ⊗ E ⊗ L−2m−1/2.

After another application ofLemma 2.1it becomes

∧2
W ⊗ (S2V ⊗ L(1−2m)/2 − L(1−2m)/2 − S2V ⊗ L(−2m−1)/2 − L(−2m−1)/2)

+W ⊗W ⊗ (L(1−2m)/2 + 2L(−2m−1)/2 + S2V ⊗ L(−2m−1/2)).

As we observed before, the only entries that matter are the first two, so we shall concentrate
on them. Consider first the line of the factor

∧2
W ; the relevant weights plusδ are

+(3,0), −(2,1), −(2,−1), +(1,0),

the first and last ones produce zero, while the two middle ones have the same sign and are
related by a reflection contained in the Weyl group ofso(2m + 5); they cancel each other
out and produce zero too. Now consider the second line with factorW ⊗ W ; the relevant
weights plusδ are

+(2,1), +(1,0), +(2,−1).

All of them produce zero, which proveŝA
(
M,

∧2
T

)
= 0.

Clearly, for every weightγ that appears in the decomposition, either the second coordinate
of γ+δwill be zero, or there will be another weight which will cancel it out. More precisely,
since the decomposition of the tangent spaceTMc = W ⊗ V ⊗ H is symmetrical in both
SU(2) bundlesV andH , for every summand in the virtual decomposition containing a
factorSiV ⊗ SjH there will be a symmetrical one containingSjV ⊗ SiH . Thus, ifPl(W)

represents a tensor bundle onW of degreel, the bundlePl(W)⊗SiV ⊗SjH is transformed
into Pl(W) ⊗ SiV ⊗ Lj−(2m+1)/2, which gives the weight((i + j − (2m + 1))/2, (j −
i − (2m + 1))/2). By addingδ to it we get((i + j + 2)/2, (j − i)/2). Similarly, the
bundlePl(W)⊗SjV ⊗SiH gets transformed intoPl(W)⊗SjV ⊗Li−(2m+1)/2 with weight
((i+ j− (2m+1))/2, (i− j− (2m+1))/2). By addingδwe get((i+ j+2)/2, (i− j)/2).
Hence, eitheri = j so that the second entry is zero, or the two resulting vectors are related
by a reflection in the Weyl group and their corresponding values from the Weyl dimension
formula cancel each other out.

In this fashion, the entire elliptic genus̃τq(Gr4(R2m+5)) vanishes, and so does
τq(Gr4(R

2m+5)). In particular, its signature vanishes:

τ(Gr4(R
2m+5)) = 0.
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3.2. The exceptional space F4/Sp(3)Sp(1)

The spaceF4/Sp(3)Sp(1) is also a 28-dimensional quaternion-Kähler manifold. Thus,
we shall apply the same ideas. LetM = F4/Sp(3)Sp(1) throughout this section, andZ its
twistor space.

The tangent space also splits asE ⊗ H under the holonomy group Sp(7)Sp(1),
and decomposes further under Sp(3)Sp(1) which also acts irreducibly on the tangent
space:

E = ∧3
0Ẽ,

whereẼ = C
6 is the standard representation of Sp(3). LetH be the Cartan subalgebra of

Lie(F4)c spanned by the following basic roots:

{α1 = (1,−1,0,0), α2 = (0,1,−1,0),

α3 = (0,0,2,0), α4 = (−1,−1,−1,1)}.
The coordinates have been chosen so thatK1 = sp(3) with Cartan subalgebra spanned
by {α1, α2, α3}, and which is orthogonal to the maximal rootρ = (0,0,0,2). In
this caseδ = (3,2,1,8). The roots coming from Sp(3) will be embedded canoni-
cally in the first three coordinates and the one coming fromU(1) in the last coordi-
nate.

Because of the modular properties of the elliptic genus[6] we only need to compute a
few coefficients, namely:

Â(M), Â(M,−T), Â
(
M,

∧2
T + T

)
, Â

(
M,−∧3

T − T − T ⊗ T
)
.

Just as before

1 = 1, T = E ⊗H,
∧2

T = ∧2
E ⊗ (S2H − 1)+ E ⊗ E,

∧3
T = ∧3

E ⊗ (S3H −H)+ ∧2
E ⊗ E ⊗H,

T ⊗ T =
(∧2

E + S2E
)

⊗ (S2H + 1)

so that they get transformed to the twistor space as follows:

1 �→ L−7/2, T �→ E ⊗ L−3,

∧2
T �→ ∧2

E ⊗ (L−5/2 − L−7/2)+ E ⊗ E ⊗ L−7/2,

∧3
T �→ ∧3

E ⊗ (L−2 − L−3)+ ∧2
E ⊗ E ⊗ L−3,

T ⊗ T �→
(∧2

E + S2E
)

⊗ (L−5/2 + L−7/2).
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We need to identify the weight decomposition of the tensor powers ofE in the representation
ring of Sp(3):

E = V(1,1,1),
∧2

E = V(0,0,0)⊕ V(2,2,0),∧3
E = V(1,1,1)⊕ V(3,2,0),

E ⊗ E = V(0,0,0)⊕ V(2,2,0)⊕ V(2,0,0)⊕ V(2,2,2),

S2E = V(2,0,0)⊕ V(2,2,2),∧2
E ⊗ E = V(1,1,1)⊕ V(3,3,1)⊕ V(2,1,0)⊕ V(3,2,0)⊕ V(3,1,1).

ConsiderL−7/2, which corresponds to−7/2(0,0,0,2). When addingδ we get(3,2,1,1),
which is orthogonal to the root(0,0,−1,1) and, therefore, produces zero in the dimension
formula. HencêA(M) = 0.

ConsiderE⊗L−3, which corresponds to(1,1,1,−6). After addingδwe get(4,3,2,2)
which is again orthogonal to(0,0,−1,1) and produces zero. HenceÂ(M, T) = 0.

The rest of the calculations are analogous and most of the weights lead to zero, while
just a couple cancel each other out. This proves that the elliptic genus vanishesτ̃q(M) = 0,
andτq(M) = 0 as well as the signature:

τ

(
F4

Sp(3)Sp(1)

)
= 0.
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